Projected Nonlinear Least Squares for Exponential Fitting
نویسندگان
چکیده
منابع مشابه
Superlinearly convergent exact penalty projected structured Hessian updating schemes for constrained nonlinear least squares: asymptotic analysis
We present a structured algorithm for solving constrained nonlinear least squares problems, and establish its local two-step Q-superlinear convergence. The approach is based on an adaptive structured scheme due to Mahdavi-Amiri and Bartels of the exact penalty method of Coleman and Conn for nonlinearly constrained optimization problems. The structured adaptation also makes use of the ideas of N...
متن کاملPEDOMODELS FITTING WITH FUZZY LEAST SQUARES REGRESSION
Pedomodels have become a popular topic in soil science and environmentalresearch. They are predictive functions of certain soil properties based on other easily orcheaply measured properties. The common method for fitting pedomodels is to use classicalregression analysis, based on the assumptions of data crispness and deterministic relationsamong variables. In modeling natural systems such as s...
متن کاملAn Improved Power Law for Nonlinear Least-Squares Fitting?
Models based on a power law are prevalent in many areas of study. When regression analysis is performed on data sets modeled by a power law, the traditional model uses a lead coefficient. However, the proposed model replaces the lead coefficient with a scaling parameter and reduces uncertainties in best-fit parameters for data sets with exponents close to 3. This study extends previous work by ...
متن کاملLeast squares fitting
Technical Note: Review of methods for linear least-squares fitting of data and application to atmospheric chemistry problems C. A. Cantrell National Center for Atmospheric Research, Atmospheric Chemistry Division, 1850 Table Mesa Drive, Boulder, CO 80305, USA Received: 13 February 2008 – Accepted: 21 February 2008 – Published: 1 April 2008 Correspondence to: C. A. Cantrell ([email protected]) P...
متن کاملTutorial: Least-Squares Fitting
Least-squares fitting, first developed by Carl Friedrich Gauss, is arguably the most widely used technique in statistical data analysis. It provides a method through which the parameters of a model can be optimised in order to obtain the best fit to a data set through the minimisation of the squared differences between the model and the data. This tutorial document describes the closely associa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Scientific Computing
سال: 2017
ISSN: 1064-8275,1095-7197
DOI: 10.1137/16m1084067